A Nuclear Magnetic Resonance Study of the Conformational Equilibrium in Fluorosulphonylethanes

By Giuseppe Marchese, Francesco Naso, Domenico Santo, and Oronzo Sciacovelli,* Istituti Chimici, Università di Bari, Via Amendola 173, Bari, Italy

The dependence of the coupling constants on the temperature has been studied for fluorosulphonylethanes (I) (IV) and with the aid of some simplifying assumptions quantitative information on the population of rotamers (a)-(c) has been obtained. In each case the conformation having the bulkiest substituents in the antiperiplanar position predominates with a fractional population in the range 0.6-1. In the series of compounds investigated ${ }^{3} J_{\mathrm{HF}}$ increases and ${ }^{2} J_{\mathrm{HF}}$ decreases with increasing electronegativity of substituents, thus showing an unusual trend. For these couplings a modest but significant solvent dependence has been also observed. The INDOR technique has proved to be a useful tool for the separation of overlapping spectra of diastereoisomeric pairs.

In a recent paper ${ }^{1}$ n.m.r. data were reported which suggested that in l-fluoro-2-phenylsulphonyl-1-phenylthioethane (I) the most highly populated conformation is that with the two sulphur substituents in the antiperiplanar position. In connection with stereochemical and kinetic work ${ }^{2}$ on the dehydrohalogenation of similar substrates we undertook a quantitative study on the
${ }^{1}$ G. Marchese, F. Naso, L. Schenetti, and O. Sciacovelli, Chimica e Industria, 1971, 53, 843.
${ }^{2}$ V. Fiandanese, G. Marchese, F. Naso, and O. Sciacovelli, J.C.S. Perkin II, 1973, 1336; V. Fiandanese, G. Marchese, and F. Naso, ibid., p. 1538; J.C.S. Chem. Comm., 1972, 250.
conformational equilibrium involving (I) and the related compounds (II)-(IV).

(a)

(b)

(c)

$$
\begin{array}{ll}
\text { (I) } R=S P h & \text { (III) } \mathrm{R}=\mathrm{SO}_{2} \mathrm{Ph} \\
\text { (II) } \mathrm{R}=\mathrm{SOPh} & \text { (IV) } \mathrm{R}=\mathrm{Br}
\end{array}
$$

RESULTS AND DISCUSSION

The n.m.r. spectra were interpreted for ethane fragments only. The spin system was treated as an ABCX case ($\mathrm{A}, \mathrm{B}, \mathrm{C}=\mathrm{H} ; \mathrm{X}=\mathrm{F}$) using the notation (A). For

(A)
the iterative calculation only proton spectra were used with the aid of a hypothetical fluorine signal necessary to close the iterative loops. ${ }^{3}$

The spectra showed magnetic non-equivalence of $H(1)$ and $H(2)$ due to the diastereotopic nature of the methylene group. The coupling pattern permitted an unambiguous assignment even if the spectra contain second-order features. In the case of compound (II) the presence of the sulphur and carbon chiral centres give rise to two diastereoisomeric products A and B which were obtained in a $2: 1$ ratio (see Experimental

Figure 1 Spectrum of $\mathrm{H}-3$. The higher peaks are due to the isomer A
section). The related n.m.r. spectra consist of two superimposed ABC systems within which the sixteen line signal of $\mathrm{H}(3)$ is clearly distinguished (see Figure 1) whereas in the region of the $\mathrm{H}(1)$ and $\mathrm{H}(2)$ signals, marked overlap does not permit attribution of the signals. Since similar compounds are dehydrohalogenated ${ }^{2}$ easily and their purification is not without difficulty, rather than attempting to separate the diastereoisomers the use of the INDOR ${ }^{4}$ technique was preferred since it gives the possibility of overcoming this difficulty. Consequently, monitoring all lines due to $\mathrm{H}(3)$ a series of intensity

[^0]spectra were obtained which showed the position and the character (progressive or regressive) of the connected transitions (see Figure 2). Through this connection the correct energy level diagram was built up and the n.m.r. parameters were iterated using all the experimental

Figure 2 Spectrum of compound (II) showing the absorption region of $\mathrm{H}-1$ and -2 and the sequence of intensity spectra necessary to locate all the individual lines of $\mathrm{H}-1$ and -2 for both isomers (only eight of the 16 INDOR experiments performed are shown)
transitions for the diastereoisomeric pair. Referred to ${ }^{3} J_{23}$ taken as positive ${ }^{3} J_{13},{ }^{3} J_{14},{ }^{3} J_{24}$, and ${ }^{2} J_{34}$ are positive whereas ${ }^{2} J_{12}$ is negative. The same trend was assumed to be valid for the other compounds. Indeed, this sign combination proved to give the lowest root mean square values.

Table 1
Coupling constants (Hz) and conformer populations for compound (I)

$T /{ }^{\circ} \mathrm{C}$	${ }^{3} J_{13}$
Solvent	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$
-50	2.2_{1}
-40	2.3_{5}
-30	2.4_{6}
-20	2.5_{7}
-10	2.6_{5}
-3	2.7_{3}
17	2.9_{9}
30	3.0_{5}
37	3.1_{0}

Solvent $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$

40	2.9_{2}
60	3.0_{9}
80	3.1_{9}
100	3.3_{4}
120	3.3_{9}
140	3.5_{2}

${ }^{3} J_{23}$	${ }^{3} J_{24}$
9.9_{8}	9.5_{7}
9.7_{3}	9.6_{8}
9.6_{1}	9.8_{5}
9.5_{3}	10.0_{6}
9.3_{4}	10.2_{7}
9.3_{2}	10.4_{9}
9.0_{4}	10.9_{2}
8.8_{6}	11.0_{0}
8.7_{6}	11.1_{2}
9.0_{9}	11.8_{1}
8.8_{3}	12.1_{0}
8.6_{1}	12.3_{9}
8.4_{4}	12.5_{7}
8.2_{0}	12.9_{4}
8.0_{7}	13.2_{1}

${ }^{2} J_{14}$

29.8_{5}
29.2_{6}
28.7_{3}
28.1_{6}
27.7_{4}
27.4_{0}
26.7_{4}
26.0_{5}
25.5_{6}

26.0_{5}
25.4_{3}
24.7_{5}
24.1_{8}
23.5_{0}
23.1_{9}

$J_{13}+J_{23}$	$\frac{1}{3}\left(2 J_{24}+J_{14}\right)$	x_{2}
12.1_{9}	16.3	$0.84-0.87$
12.0_{8}	16.2	$0.81-0.85$
12.0_{7}	16.1	$0.79-0.83$
12.1_{0}	16.1	$0.78-0.83$
11.9_{θ}	16.1	$0.76-0.81$
12.0_{5}	16.1	$0.76-0.81$
12.0_{3}	16.2	$0.73-0.78$
11.9_{1}	16.0	$0.70-0.76$
11.8_{6}	15.9	$0.69-0.75$
12.0_{1}	16.6	$0.73-0.78$
11.9_{1}	16.5	$0.70-0.76$
11.8_{0}	16.5	$0.67-0.74$
11.7_{8}	16.4	$0.65-0.72$
11.5_{9}	16.5	$0.63-0.70$
11.5_{9}	16.5	$0.61-0.68$

$x_{b}+x_{c}$
$0.13-0.16$
$0.13-0.16$
$0.15-0.19$ $0.17-0.21$ $0.17-0.22$ 0.19-0.24 $0.19-0.24$
$0.22-0.27$ $0.24-0.30$ $0.25-0.31$
$0.22-0.27$
$0.24-0.30$
$0.24-0.30$
$0.26-0.33$
$0.26-0.33$
$0.28-0.35$
$0.28-0.35$
$0.30-0.37$
$0.32-0.39$

Table 2
Coupling constants (Hz) and conformer populations for compound (IIA) *

TAble 3
Coupling constants (Hz) and conformer populations for compound (IIB) *

T/ ${ }^{\circ} \mathrm{C}$	${ }^{3} J_{13}$	${ }^{3} J_{23}$	${ }^{3} J_{24}$	${ }^{3} J_{14}$	$J_{13}+J_{23}$	$\frac{1}{3}\left(2 J_{24}+J_{14}\right)$	$x_{\text {a }}$	$x_{\text {b }}+x_{\text {c }}$
Solvent CDCl_{3}								
-17	1.17	$10.0{ }^{6}$	$13.0{ }_{3}$	35.7 ${ }_{1}$	11.23	20.6	0.86-0.90	0.10-0.14
-9	1.23	$10.0{ }_{5}$	$13.0{ }_{9}$	35.39	11.29	20.5	0.86-0.90	0.10-0.14
-6	1.25	9.98	13.15	$35.4{ }_{8}$	11.23	20.6	0.85-0.89	$0.11-0.15$
5	1.36	9.95	$13.2{ }_{7}$	$35.0{ }_{8}$	$11.3{ }_{1}$	20.5	0.85-0.89	0.11-0.15
17	1.44	9.85	13.40	34.6 ${ }_{1}$	11.29	20.5	0.83-0.88	0.12-0.17
41	$1.6{ }_{6}$	9.59	$13.7{ }_{7}$	33.97	11.25	20.5	$0.80-0.86$	$0.14-0.20$
49	1.72	9.56	13.95	33.5 ${ }_{\text {b }}$	11.28	20.5	0.80-0.85	0.15-0.20
Solvent ($\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$								
40	1.69	10.10	$13.5{ }_{0}$	35.70	11.78	20.9	0.86-0.90	0.10-0.14
50	1.72	9.90	13.68	$35.2{ }^{2}$	11.6	20.9	0.84-0.88	$0.12-0.16$
60	$1.7{ }^{2}$	9.78	$13.8{ }^{8}$	$35.1{ }_{5}$	$11.5{ }_{6}$	20.9	0.83-0.87	0.13-0.17
70	1.92	9.6	$14.0{ }_{7}$	34.73	11.58	21.0	$0.81-0.86$	0.14-0.19
80	1.96	9.62	13.9 d	34.60	11.58	20.8	$0.81-0.86$	$0.14-0.19$

Table 4
Courpling constants (Hz) and conformer populations for compound (III)

$T /{ }^{\circ} \mathrm{C}$	${ }^{3} J_{13}$	${ }^{3} J_{23}$	${ }^{3} J_{24}$	${ }^{8} J_{14}$	$J_{13}+J_{2}$	$\left.{ }_{24}+J_{14}\right)$	$x_{\text {a }}$	$x_{\mathrm{b}}+x_{\mathrm{c}}$
Solvent CDCl_{3}								
-59	0.92	$10.8{ }_{4}$	11.27	$37.2{ }_{8}$	$11.7{ }_{6}$	19.9	~ 0.99	~ 0.01
-52	0.90	$10.8{ }_{3}$	11.30	$37.0{ }_{8}$	$11.7{ }^{3}$	19.9	~ 0.99	~ 0.01
-45	0.97	10.78	11.47	$37.0{ }_{7}$	11.75	20.0	~ 0.98	~ 0.02
-37	0.97	$10.7{ }_{7}$	11.6	36.95	11.74	20.0	~ 0.98	~ 0.02
-23	1.08	10.6 6	$11.8{ }_{6}$	$36.7{ }_{0}$	11.74	20.1	~ 0.97	~ 0.03
-12	1.0	10.68	12.01	36.59	11.77	20.2	~ 0.97	~ 0.03
-2	1.11	10.53	12.1 ${ }^{6}$	$36.3{ }_{2}$	11.74	20.2	0.95-0.96	0.04-0.05
-2	1.13	10.61	12.18	36.39	11.64	20.2	$0.96-0.97$	0.03-0.04
11	1.12	$10.5{ }_{3}$	$12.3{ }_{3}$	36.15	11.65	20.3	0.95-0.96	0.04-0.05
30	1.22	$10.3{ }_{3}$	$12.6{ }_{7}$	$35.9{ }_{1}$	11.55	20.4	0.93-0.94	0.06-0.07
40	1.19	10.37	$12.7{ }_{4}$	$35.6{ }_{6}$	11.56	20.4	0.93-0.94	$0.06-0.07$
50	1.32	10.2。	12.90	35.61	11.58	20.5	0.92-0.94	0.06-0.08
Solvent ($\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$								
30	1.29	10.00	$14.4{ }_{7}$	36.28	11.38	21.7	0.89-0.92	0.08-0.11
42	1.34	10.00	14.5	35.9,	$11.3{ }_{4}$	21.7	0.88-0.91	0.09-0.12
50	1.41	9.98	$14.5{ }_{0}$	35.87	11.37	21.6	0.88-0.91	0.09-0.12
55	1.43	9.97	$14.5{ }_{\text {g }}$	$35.7{ }_{5}$	11.40	21.6	0.88-0.91	0.09-0.12
61	1.46	9.93	$14.6{ }_{7}$	35.61	11.3	21.6	0.87-0.90	$0.10-0.13$
84	$1.5{ }_{3}$	$9.7{ }_{7}$	14.63	35.17	11.30	21.5	0.85-0.89	$0.11-0.15$
90	$1.5{ }_{6}$	9.81	$14.6{ }_{8}$	$34.9{ }_{6}$	11.37	21.4	0.86-0.89	0.11-0.14
100	1.62	9.67	$14.6{ }_{7}$	$34.8{ }_{1}$	11.29	21.4	0.84-0.88	$0.12-0.16$
110	1.65	9.73	$14.8{ }_{0}$	$34.5{ }_{3}$	11.38	21.4	0.85-0.89	$0.11-0.15$
120	1.73	9.62	14.75	$34.3{ }_{2}$	11.35	21.4	0.83-0.88	$0.12-0.17$

Table 5
Coupling constants (Hz) and conformer populations for compound (IV)

$T /^{\circ} \mathrm{C}$	${ }^{3} J_{13}$	${ }^{3} J_{23}$	${ }^{3} J_{24}$	${ }^{3} J_{14}$	$J_{13}+J_{2 a}$	$\frac{1}{8}\left(2 J_{24}+J_{14}\right)$	$x_{\text {a }}$	$x_{\mathrm{b}}+x_{\mathrm{c}}$
Solvent CDCl_{3}								
-58	1.63	9.90	$9.7{ }_{7}$	35.37	11.5	18.3	0.86-0.90	0.10-0.14
-50	$1.7{ }_{3}$	9.81	9.91	35.00	11.54	18.3	0.85-0.89	0.11-0.15
-41	1.80	9.68	10.10	34.40	11.48	18.2	0.83-0.88	0.12-0.17
-32	1.88	9.67	$10.3{ }_{0}$	33.86	11.5	18.2	0.83-0.88	$0.12-0.17$
-21	1.95	$9.5{ }_{6}$	10.48	$33.6{ }_{8}$	11.51	18.2	0.82-0.87	0.13-0.18
-11	2.01	9.40	$10.5{ }_{9}$	33.12	11.4	18.1	$0.80-0.85$	0.15-0.20
1	2.09	9.2	10.75	32.6	11.38	18.1	$0.78-0.84$	0.16-0.22
11	2.15	9.14	$10.8{ }_{7}$	32.00	11.29	17.9	$0.77-0.83$	$0.17-0.23$
36	2.32	8.98	$11.3{ }_{4}$	30.93	11.28	17.9	$0.74-0.81$	$0.19-0.26$
44	2.39	8.82	11.53	$30.4{ }_{8}$	11.21	17.9	$0.73-0.80$	0.20-0.27
Solvent ($\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$								
60	2.45	8.71	11.93	30.81	$11.1{ }_{6}$	18.2	$0.71-0.79$	$0.21-0.29$
70	2.53	$8.6{ }_{6}$	$12.1{ }_{0}$	$30.3{ }^{\text {6 }}$	11.19	18.2	$0.71-0.79$	0.21-0.29
80	2.58	8.50	12.25	30.00	11.08	18.2	0.69-0.77	0.23-0.31
90	2.65	8.45	$12.5{ }_{2}$	29.63	11.10	18.2	$0.68-0.77$	0.23-0.32

Table 6
Chemical shift (p.p.m. from $\mathrm{Me}_{4} \mathrm{Si}^{*}$) ranges of $\mathrm{H}-1,-2$, and -3 for compounds (I)-(IV)

Compound	Solvent	ν_{1}	ν_{2}	ν_{3}
(I)	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$	$4.05_{1}-3.84_{0}$	$4.08_{3}-3.89{ }_{2}$	$6.40{ }_{5}-6.278$
	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	$4.57_{1}-4.42_{7}$	$4.567_{7}-4.46{ }_{1}$	$6.788_{4}-6.74{ }_{6}$
(IIA)	CDCl_{3}	$3.43{ }_{1}-3.50{ }_{3}$	$3.900_{0}-3.79{ }_{2}$	$5.58{ }_{6}-5.50{ }_{9}$
	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	$3.51{ }_{2}-3.53{ }_{7}$	$4.04_{6}-3.979$	$5.898-5.80{ }_{5}$
(IIB)	CDCl_{3}	$3.80{ }_{4}-3.74{ }_{9}$	$3.31{ }_{8}-3.27_{4}$	$5.828_{8}-5.74{ }_{8}$
	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	$4.16{ }_{2}-4.05{ }_{3}$	$3.89{ }_{8}-3.80{ }_{5}$	$5.988_{6}-5.90{ }_{8}$
(III)	CDCl_{3}	$4.02{ }_{3}-3.91{ }_{4}$	$3.83{ }_{0}-3.68{ }_{2}$	$5.78{ }_{0}-5.65{ }_{7}$
	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	$4.16{ }_{4}-3.95_{6}$	$4.10{ }_{6}-3.85{ }_{8}$	$6.200_{4}-5.90{ }_{2}$
(IV)	CDCl_{3}	$4.38{ }^{2}-4.11{ }^{6}$	$4.73_{9}-4.38_{1}$	$7.22_{0}-6.99_{3}$
	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	$4.32-4.20_{4}$	$4.56_{9}-4.43_{0}$	$7.00_{8}-6.86_{4}$

The n.m.r. parameters of the compounds investigated are reported in Tables 1-7.

Table 7
Coupling constant ranges (Hz) for geminal $\mathrm{H}-\mathrm{H}$ and $\mathrm{H}-\mathrm{F}$

mpo	Solvent	${ }^{2} J_{12}$	${ }^{2} J_{34}$
(I)	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$	-15.0_{4} to -15.2_{2}	53.42-54.09
	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	-15.1_{6} to -15.2_{3}	$53.33_{1}-54.0{ }_{4}$
(IIA)	CDCl_{3}	-15.3_{1} to $-15.4{ }_{2}$	$48.3{ }_{1}-48.9{ }_{0}$
	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	$-15.5{ }_{7}$ to -15.7_{1}	$47.85-48.0{ }_{5}$
(IIB)	CDCl_{3}	-15.0 to -15.1_{4}	$47.5{ }_{2}-47.8_{1}$
	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	$-15.1{ }_{7}$ to -15.3_{0}	$48.244_{4}-48.4{ }_{8}$
(III)	CDCl_{3}	-14.88_{6} to $-15.2{ }_{9}$	$48.4{ }_{8}-48.87$
	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	-15.2_{4} to -15.3_{7}	$47.77_{1}-48.1_{3}$
(IV)	CDCl_{3}	-15.08 to $-15.1{ }_{9}$	$49.99_{6}-50.3{ }_{5}$
	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	-15.1_{6} to -15.2_{8}	49.75-49.9

By examining the values of the vicinal coupling constants and their temperature dependence the following information on the conformational behaviour can be obtained. Rotational averaging occurs and for all compounds, in the range of temperature investigated, the conformer having the two groups with the highest steric requirements in an antiperiplanar position is much preferred. Therefore, the observed vicinal couplings are the weighted mean of those in the individual rotamers (a)-(c) [equations (1) and (2) where $x_{a}-x_{\mathrm{c}}$ designate the

$$
\begin{align*}
& J_{13}=x_{\mathrm{a}}\left(J_{g}\right)^{a}{ }_{13}+x_{\mathrm{b}}\left(J_{t}\right)^{b}{ }_{13}+x_{\mathrm{c}}\left(J_{g}\right)^{c}{ }_{13} \tag{1}\\
& J_{23}=x_{\mathrm{a}}\left(J_{t}\right)^{a}{ }_{23}+x_{\mathrm{b}}\left(J_{g}\right)^{b}{ }_{23}+x_{\mathrm{c}}\left(J_{g}\right)^{c}{ }_{23} \tag{2}
\end{align*}
$$

fractions of population of conformers (a)-(c) respectively]. Obviously equation (3) holds. Therefore in

$$
\begin{equation*}
x_{\mathrm{a}}+x_{\mathrm{b}}+x_{\mathrm{c}}=1 \tag{3}
\end{equation*}
$$

order to get information on fractional populations, knowledge of the J values is needed and this cannot be obtained without a few simplifying assumptions.

Coupling Constant J_{t}. We can set $\left(J_{t}\right)_{13}=\left(J_{t}\right)_{23}$, as the Karplus equation in the simple original form ${ }^{5}$ and in the subsequent formulations ${ }^{6-10}$ shows that $J_{180^{\circ}}$ is relatively insensitive to small changes in the dihedral angle. On the other hand, the electronegativity of the substituents would be expected to effect both J_{t} values ${ }^{7,11}$ to a similar extent. We find that for a series of selected data for a variety of open chain and some cyclic compounds (see Table 8), within experimental error, J_{t} has a linear dependence on the Huggins electronegativity ${ }^{12}$ according to equation (4). Therefore by using known

$$
\begin{equation*}
J_{t}=25.00-1.16 \sum_{n=1}^{4} e_{i} \tag{4}
\end{equation*}
$$

[^1]electronegativity values ${ }^{12,13}$ equation (4) allows us to calculate the following J_{t} values: (I), 11.33; (II), 11.21 ; (III), 10.96 ; (IV), 11.09 Hz .

Coupling Constant J_{g}.-A survey of literature data for compounds having S, SO, and SO_{2} groups as substituents ${ }^{14}$ and an electronegativity sum comparable with that for compounds (I)-(IV) gives J_{g} values in the

Table 8
J_{t} Values and the sum of the electronegativities of the substituents ${ }^{a}$

Compound	J_{t} / Hz	$\sum_{n=1}^{4} \mathrm{e}_{i}$	Ref
$\mathrm{Bu}^{t} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Li}$	15.5 ± 0.3	8.0	d
$\mathrm{Bu}^{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$	13.9 $\ddagger 0.4$	9.6	e
$\mathrm{Bu}^{t} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SPh}$	14.2 ± 0.4	9.6	e
2-t-Butyl-1,3-dithian l-oxide	$13.0{ }^{\text {b }}$	9.6	f
Cyclohexane	13.1 ± 0.05	9.6	g
$\mathrm{Bu}^{\mathrm{t}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}$	14.5 ± 0.3	9.65	e
$\mathrm{CH}_{2} \mathrm{ICH}_{2} \mathrm{I}$	14.0 ± 0.1	9.7	15
$\mathrm{But}^{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	13.7 ± 0.3	$9.7{ }^{5}$	e
2-t-Butyl-1,3-dithian	$13.0{ }^{\circ}$	9.78	f
1-oxide			
$\mathrm{Bu}^{t} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$	14.1 ± 0.3	9.95	e
$\mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{Br}$	13.4 ± 0.1	10.3	15
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Br}$	13.0 ± 0.4	10.5	15
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$	12.5 ± 0.5	10.7	15
$\mathrm{CH}_{2} \mathrm{FCH}_{2} \mathrm{Br}$	12.1 ± 0.4	11.25	15
$\mathrm{MeOCH} 2 \mathrm{CH}_{2} \mathrm{OMe}$	11.9	11.4	20
2,3-Dimethyl-1,4-dioxan	11.5	11.8	h
$\mathrm{CHBr}_{2} \mathrm{CHF}_{2}$	9.0 ± 0.5	13.7	16
$\mathrm{CHCl}_{2} \mathrm{CHF}_{2}$	8.4 ± 0.5	14.1	16
$\mathrm{CHF}_{2} \mathrm{CHF}_{2}$	6.9 ± 0.3	15.6	16
$\mathrm{CH}_{2} \mathrm{FCH}_{2} \mathrm{Cl}$	11.5 ± 0.5	11.45	15

${ }^{a}$ r.m.s. $= \pm 0.40 ;{ }^{b} J_{4 a x, 5 a x} ;{ }^{\circ} J_{5 a x, 6 a x} .{ }^{d}$ M. Witanowski and J. D. Roberts, J. Amer. Chem. Soc., 1966, 88, 737. ${ }^{\circ}$ G. M. Whitesides, J. P. Sevenair, and R. W. Goetz, J. Amer. Chem. Soc., 1967, 89, $1135 . \quad \delta$ M. J. Cook and A. P. Tonge, J.C.S. Perkin II, 1974, 767. E. W. Garbisch and M. G. Griffith, J. Amer. Chem. Soc., 1968, 90, 6543. ${ }^{h}$ G. Gatti, A. L. Segre, and C. Morandi, Tetrahedron, 1967, 23, 4385.
range $1.2-2.9 \mathrm{~Hz}$. However, treatment similar to that performed for J_{t} is not possible since J_{g} values are sensitive to small variations in the dihedral angle and, particularly, to the orientation ${ }^{6,7,15-17}$ of substituents. At this point it is worth noting that the available data ${ }^{14}$ refer to cyclic systems with some degree of flexibility. In spite of this difficulty we can show that even enlarging the above range to include the limiting case where $J_{g} \simeq 0$ a valid approach is still possible.

Indeed, the sum of the population of conformers (b) and (c) can be evaluated by transforming equations (2) and (3) into (5) and (6). From the J_{23} values reported in

[^2]Tables $1-5$ it can be seen that, due to the predominance of isomer (a), in our compounds $\left(J_{t}-J_{23}\right)$ ranges

$$
\begin{align*}
& J_{23}=J_{t}-x_{\mathrm{b}}\left[J_{t}-\left(J_{g}\right)^{b_{23}}\right]-x_{\mathrm{c}}\left[J_{t}-\left(J_{g}\right)^{c_{23}}\right] \tag{5}\\
& J_{t}-J_{23}=x_{\mathrm{b}}\left[J_{t}-\left(J_{g}\right)^{b_{23}}\right]+x_{\mathrm{c}}\left[J_{t}-\left(J_{g}\right)^{c_{23}}\right] \tag{6}
\end{align*}
$$

between 0.1 and 3.3 the lower and the higher limits being valid, respectively, for (III) at -59° and for (I) at 140°. If we take $\left[J_{t}-\left(J_{g}\right)^{b}{ }_{23}\right]=\left[J_{t}-\left(J_{g}\right)^{c}{ }_{23}\right]=\left(J_{t}-J_{g}\right)$, an assumption which will be justified a posteriori, equation (6) simplifies to (7). Equation (7) allows us to

$$
\begin{equation*}
J_{t}-J_{23}=\left(x_{\mathrm{b}}+x_{\mathrm{c}}\right)\left(J_{t}-J_{g}\right) \tag{7}
\end{equation*}
$$

calculate $x_{\mathrm{b}}+x_{\mathrm{c}}$ and, consequently x_{a}. The data are reported in Tables 1-5.

The validity of the above assumption can now be easily shown if we take into account that $J_{t}-J_{g} \simeq 10$ Hz and that a difference of 1 Hz in this value would lead to a maximum variation of 0.03 in the fraction of population.

The x_{a} values at a given temperature show that within the series of sulphur substituted compounds (I) - (III) the steric requirements of the R group govern the relative conformation stability. ${ }^{18}$

Partition of $x_{\mathrm{b}}+x_{\mathrm{c}}$ between the two components is not possible. By combining equations (1) and (3) we obtain (8). If in a simplifying attempt we assume
$J_{13}=$

$$
\begin{equation*}
{ }^{10}\left(J_{g}\right)^{a_{13}}+x_{6}\left[J_{t}-\left(J_{g}\right)^{a_{13}}\right]+x_{c}\left[\left(J_{g}\right)^{c}{ }_{13}-\left(J_{g}\right)^{a_{13}}\right. \tag{8}
\end{equation*}
$$

$\left(J_{g}\right)^{c}{ }_{13} \simeq\left(J_{g}\right)^{a}{ }_{13} \simeq\left(J_{g}\right)_{13}$ equation (9) is obtained.

$$
\begin{equation*}
J_{13}-\left(J_{g}\right)_{13}=x_{\mathrm{b}}\left(J_{t}-J_{13}\right) \tag{Now}
\end{equation*}
$$

it can be realized that the choice of a value for $\left(J_{g}\right)_{13}$ is crucial in calculating x_{b}. Indeed, recalling that $J_{t}-\left(J_{g}\right)_{13} \simeq 10 \mathrm{~Hz}$ an uncertainty of 1 Hz in the J_{g} values leads to an uncertainty of 0.1 in the value of x_{b}. If we consider that the highest value for $x_{\mathrm{b}}+x_{\mathrm{c}}$ is 0.4 (see Table 1) this would amount to at best an error of 25%. Therefore equations (8) and (9) are of little help.

On the other hand some useful information on the relative population can be obtained by a different approach. ${ }^{19}$ By adding equations (1) and (2) we obtain (10). The data for compounds (IIB) and (III) (see

$$
\begin{array}{r}
J_{13}+J_{23}=x_{\mathrm{a}}\left[J_{t}+\left(J_{g}\right)^{a_{13}}\right]+{ }_{x_{\mathrm{b}}\left[J_{t}+\left(J_{g}\right)^{b_{23}}{ }_{23}+\right.}^{x_{\mathrm{c}}\left[\left(J_{g}\right)^{c}{ }^{c}+\left(J_{g}\right)^{c}+23\right]}+
\end{array}
$$

Tables 3 and 4) show that this sum is constant in the two solvents over a wide range of temperature. In principle, this insensitivity to the temperature changes could arise for a variety of reasons.

[^3](i) A fortuitous compensation of effects in the right hand terms of equation (10) could occur. Actually, increase in temperature leads to a decrease of x_{a} and to a corresponding increase of $x_{\mathrm{b}}+x_{\mathrm{c}}$. However, it seems highly unlikely that over a wide temperature range and for two solvents a decrease in the product $x_{a}\left[J_{t}+\right.$ $\left.\left(J_{g}\right)^{a}{ }_{13}\right]$ would be perfectly balanced $[\pm 0.02 \mathrm{~Hz}$ for (III) in $\mathrm{CDCl}_{3} ; \pm 0.05 \mathrm{~Hz}$ for (III) $\mathrm{Me}_{2} \mathrm{SO} ; \pm 0.04$ for compound (IIB) in $\left.\mathrm{CDCl}_{3}\right]$ by the sum $x_{\mathrm{b}}\left[J_{t}+\left(J_{g}\right)^{b}{ }_{13}\right]+$ $x_{c}\left[\left(J_{g}\right)^{c}{ }_{13}+\left(J_{g}\right)^{c}{ }^{c}{ }^{2}\right]$.
(ii) $x_{a} \simeq 1$. When conformer (a) is practically the only one present both J_{13} and J_{23} should be constant with temperature according to equations (1) and (2). This seems likely to occur for compound (III) in CDCl_{3} at low temperature $\left(-59\right.$ to -37°) (see Table 4).
(iii) $x_{\mathrm{c}} \simeq 0$. This seems likely to occur for compound (III) in $\mathrm{Me}_{2} \mathrm{SO}$ and for compound (IIB) in CDCl_{3} and in $\mathrm{Me}_{2} \mathrm{SO}$. The high energy of rotamer (c) should be due to steric and dipolar repulsion between the $\mathrm{C}-\mathrm{F}, \mathrm{C}-\mathrm{SOPh}$, and $\mathrm{C}-\mathrm{SO}_{2} \mathrm{Ph}$ groups. In these conditions equation (10) becomes (11). The insensivity of the sum $J_{13}+J_{23}$
\[

$$
\begin{equation*}
J_{13}+J_{23}=x_{\mathrm{a}}\left[J_{t}+\left(J_{g}\right)^{a}{ }_{13}\right]+x_{\mathrm{b}}\left[J_{t}+\left(J_{g}\right)^{b}{ }_{23}\right] \tag{11}
\end{equation*}
$$

\]

to the temperature would also require that $\left[J_{t}+\right.$ $\left.\left(J_{g}\right)^{b}{ }_{23}\right] \simeq\left[J_{t}+\left(J_{g}\right)^{a}{ }_{13}\right]$ and with $x_{\mathrm{a}}+x_{\mathrm{b}}=1$ equation (11) simplifies to (12).

$$
\begin{equation*}
J_{13}+J_{23}=J_{t}+J_{g} \tag{12}
\end{equation*}
$$

It is worth noting that for compound (IIB) $\left(J_{t}+\right.$ $\left.J_{g}\right) \mathrm{Me}_{2} \mathrm{SO} \neq\left(J_{t}+J_{g}\right) \mathrm{CDCl}_{3}$. This variation could be due mainly to changes ${ }^{20,21}$ of molecular geometry induced by solvent in the most highly populated conformer (a).

Besides the above cases no other quantitative information on the relative population of x_{b} and x_{c} is given by our data. It can be only said that for all the other compounds the decrease of $J_{13}+J_{23}$ with increasing temperature suggests the presence of a small but definite amount of conformer (c).

On the basis of theoretical ${ }^{6-9,22}$ and experimental ${ }^{23,24}$ work it is known that ${ }^{3} J_{\text {HF }}$ depends upon the dihedral angle between the coupling nuclei in the same manner of ${ }^{3} J_{\text {Her }}$. However, no rotamers population analysis can be performed starting from vicinal $\mathrm{H}-\mathrm{F}$ couplings because of their intrinsic solvent ${ }^{25-27}$ and, occasionally, concentration dependence. ${ }^{25}$ Nevertheless, the ${ }^{3} J_{H F}$ values show some interesting features.

The values of ${ }^{3} J_{24}$, particularly for compounds (IIA) and (III) (see Tables 2 and 4) apparently suggest that the population of conformer (c) increases with respect to the population of conformer (b) on going from CDCl_{3} to $\mathrm{Me}_{2} \mathrm{SO}$. In effect in molecules having polar groups the population of the more polar conformer is expected to
${ }^{23}$ A. M. Ihrig and S. L. Smith, J. Amer. Chem. Soc., 1970, 92, 759.
${ }_{24}$ K. L. Williamson, Yuan-Fang Li Hsu, F. H. Hall, S. Swager, and M. S. Coulter, J. Amer. Chem. Soc., 1968, 90, 6717.
${ }^{25}$ R. J. Abraham and R. H. Kemp, J. Chem. Soc. (B), 1971, 1240.
${ }_{26}$ G. Govil and H. J. Bernstein, J. Chem. Phys., 1968, 48, 285.
${ }_{27}$ M. Barfield and M. D. Johnston, Chem. Rev., 1973, 78, 53.
increase with the dielectric constants of the solvent. ${ }^{28}$ Indeed, inspection of the Newman projections of conformer (c) reveals that the groups are oriented in a favourable position for producing high polarity.

On the other hand the observation that the values of $\frac{1}{3}\left(2^{3} J_{13}+{ }^{3} J_{23}\right)$ are practically constant in the two solvents, ${ }^{10 c, 29}$ ranging between 4.2 and 4.3 , indicates that this effect is not of great relevance. In conclusion, the trend in ${ }^{3} J_{24}$ values and the difference $\frac{1}{3}\left(2^{3} J_{24}+\right.$ $\left.{ }^{3} J_{14}\right)_{\mathrm{Me}_{2} \mathrm{SO}}-\frac{1}{3}\left(2^{3} J_{24}+{ }^{3} J_{14}\right)_{\mathrm{CDCl}_{3}}$ should be mostly due to a solvent effect arising from solvent-induced electronic changes in solute molecules. ${ }^{27}$ Furthermore, the hypothesis is corroborated by the observation that this difference is higher for the more polar molecules.

In any case these results suggest that equations relating the $\mathrm{H}-\mathrm{F}$ vicinal coupling constants with the electronegativities of the substituent ${ }^{23,30}$ should be based on systematic studies performed in solvents of different polarity and over a sufficiently wide temperature range. This is also valid in the light of the unusual trend of the $\frac{1}{3}\left(2^{3} J_{24}+{ }^{3} J_{14}\right)$ values in the series of compounds investigated. In fact, an increase with the electronegativity of the substituents is observed for this parameter. A theoretical study performed by Chandra and Narasimhan ${ }^{10 a}$ in fragments of the type $\mathrm{H}-\mathrm{X}-\mathrm{Y}-\mathrm{H}$ $(\mathrm{X}, \mathrm{Y}=\mathrm{C}, \mathrm{N}$, or O) predicts a positive sign for the B coefficient when the coupling constant increases with the electronegativity of the substituent. It is worth noting that in our systems at low temperature the relation $4^{3} J_{24}>{ }^{3} J_{14}$ is valid.
${ }_{2} J_{34}$ (see Table 7) shows an unusual trend since it decreases with increasing electronegativity of the substituent in contrast with the situation for several substituted fluoroalkanes. ${ }^{25,31,32}$ Furthermore, this constant shows a small but well defined solvent dependence, which should be caused by electronic rather than by conformational factors. In fact, when $\mathrm{R}=\mathrm{SPh}$ the ${ }^{2} J_{\mathrm{HF}}$ values are very close in $\mathrm{Me}_{2} \mathrm{SO}$ and in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$, both solvents being polar. On the other hand for all the other compounds the difference ${ }^{2} J_{34}\left(\mathrm{CDCl}_{3}\right)-{ }^{2} J_{34}$ $\left(\mathrm{Me}_{2} \mathrm{SO}\right)$ increases with the $\mathrm{C}-\mathrm{R}$ dipole and different behaviour is observed within the diasteroisomeric pair. ${ }^{27}$

EXPERIMENTAL

Synthesis of Compounds (I)-(IV).-1-Fluoro-1-phenyl-thio-2-phenylsulphonylethane (I), m.p. 75-76 ${ }^{\circ}$ (from ethanol), was prepared by a procedure described else-

[^4]where. ${ }^{1}$ Diastereoisomers of 1-fluovo-1-phenylsulphinyl-2phenylsulphonylethane (II) were obtained by oxidation of compound (I) with the required amount of perbenzoic acid in chloroform at -20°. After completion of the oxidation the resulting solution was washed with $\mathrm{NaHCO}_{3}(5 \%)$ and water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed and the residue washed with ethyl ether. The resulting 2:1 mixture of diastereoisomers had m.p. $107-116^{\circ}$ (Found C, 53.5; H, 4.1; $\mathrm{F}, 6.0 ; \mathrm{S}, 20.3$. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{FO}_{3} \mathrm{~S}_{2}$ requires C, $53.8 ; \mathrm{H}, 4.2 ; \mathrm{F}, 6.1 ; \mathrm{S}, 20.5 \%$). Oxidation of (I) with an excess of peracetic acid in a steam-bath gave 1-fluoro-1,2-bisphenylsulphonylethane (III), m.p. 163-164 (from ethanol) (Found C, 50.6; H, 4.2; F, 5.8; S, 19.4. $\mathrm{C}_{14} \mathrm{H}_{13}{ }^{-}$ $\mathrm{FO}_{4} \mathrm{~S}_{2}$ requires C, $51.2 ; \mathrm{H}, 4.0 ; \mathrm{F}, 5.8 ; \mathrm{S}, 19.5 \%$). 1-Bromo-1-fluoro-2-phenylsulphonylethane (IV) was obtained by refluxing a solution of $48 \% \mathrm{HBr}(20 \mathrm{ml})$ containing phenyl cis-2-fuorovinyl sulphone (0.5 g ,), ${ }^{1} \mathrm{~m} . \mathrm{p}$. $87-88^{\circ}$ (from ethanol) (Found C, 35.7; H, 3.0; $\mathrm{Br}, 29.4 ; \mathrm{F}, 7.0 ; \mathrm{S}, 12.0$ $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrFO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 36.0 ; \mathrm{H}, 3.1 ; \mathrm{Br}, 29.1 ; \mathrm{F}, 7.1$; S, 12.0%).
${ }^{1} \mathrm{H}$ N.m.r. Spectra.-Spectra were recorded at -60 to 140°. For each compound the higher limit was determined by the start of decomposition and the lower by precipitation from solution. Since the solubility of the compounds in the solvents used is not high, experiments were performed close to saturation. For the spectra at higher temperature $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ was used as solvent. Lower temperature spectra were taken in CDCl_{3}, except for one case which required $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$. The spectra were recorded at 100 MHz using a Varian HA100 spectrometer with the following conditions: recording scale $2 \mathrm{~Hz} \mathrm{~cm}^{-1}$, sweep rate $0.2 \mathrm{~Hz} \mathrm{~s}^{-1}$. Calibration at 10 Hz intervals was made by a HewlettPackard 5521 frequency counter. For INDOR spectra the instrument was modified following the Varian publication VKZ 4354-001. The observing frequency was obtained with a Hewlett-Packard 4204 audio-oscillator. The scan rate and the intensity of saturating frequency were adjusted to obtain a new equilibrium distribution of the spin population. The temperature of the sample was checked before and after recording the spectra. The experimental spectra were analysed with the aid of LAOCOON 3 program on a IBM $360 / 65$ computer. The root mean square deviations between calculated and observed transitions have a mean value of 0.034 .

Financial support by C.N.R. (Rome) is gratefully acknowledged.
[4/1700 Received, 13th August, 1974]

[^5]
[^0]: ${ }^{3}$ S. Castellano and A. A. Bothner-By, J. Chem. Phys., 1964, 41, 3863.
 ${ }^{4}$ E. B. Baker, J. Chem. Phys., 1966, 45, 609.

[^1]: ${ }^{5}$ M. Karplus, J. Amer. Chem. Soc., 1963, 85, 2870.
 ${ }^{6}$ K. G. R. Pachler, Tetrahedron Letters, 1970, 1955.
 7 K. G. R. Pachler, Tetrahedron, 1971, $2 \nmid$, 187.
 ${ }^{8}$ K. G. R. Pachler, J.C.S. Perkin II, 1972, 1936.
 ${ }^{9}$ M. S. Gopinathan and P. T. Narasimhan, Mol. Phys., 1971, 21, 1141.
 ${ }_{10}$ (a) P. Chandra and P. T. Narasimhan, Mol. Phys., 1972, 24, 527; (b) G. E. Maciel, J. W. McIver, N. S. Ostlund, and J. A. Pople, J. Amer. Chem. Soc., 1970, 92, 4497; (c) K. G. R. Pachler, J. Magnetic Resonance, 1972, 8, 183.
 ${ }^{11}$ L. Phillips and V. Wray, J.C.S. Perkin II, 1972, 536 ; H. Booth and P. R. Thornburrow, Chem. and Ind., 1968, 685.
 ${ }^{12}$ M. L. Huggins, J. Amer. Chem. Soc., 1953, 75, 4123.

[^2]: ${ }^{13}$ G. Maccagnani and F. Taddei, Boll. Sci. fac. Chim. ind. Bologna, 1965, 23, 381; H. Hogeveeen, G. Maccagnani, and F. Taddei, Rec. Trav. chim., 1964, 83, 937.

 14 J. H. Markgraf, B. A. Hess, C. W. Nochols, and R. W. King, J. Org. Chem., 1964, 29, 1499; A. B. Foster, J. M. Duxburg, T. D. Inch, and J. M. Webber, Chem. Comm., 1967, 881 ; A. B. Foster, T. D. Inch, M. H. Quadir, and J. M. Webber, ibid., 1968, 1086.
 ${ }_{15}$ R. J. Abraham and G. Gatti, J. Chem. Soc. (B), 1969, 961.
 ${ }_{16}$ R. J. Abraham, M. A. Cooper, T. N. Siverns, P. F. Swinton, H. G. Weder, and L. Cavalli, Org. Magnetic Resonance, 1974, 6, 331.
 ${ }_{17}$ R. J. Abraham, L. Cavalli, and K. G. R. Pachler, Mol. Phys., 1966, 11, 471.

[^3]: 18 F. Taddei, Boll. Sci. fac. Chim. ind. Bologna, 1968, 26, 107.
 19 E. I. Snyder, J. Amer. Chem. Soc., 1966, 88, 1165.
 ${ }^{20}$ V. Viti, P. L. Indovina, F. Podo, L. Radics, and G. Nemethy, Mol. Phys., 1974, 27, 541.
 ${ }_{21}$ R. J. Abrabam and E. Bretschneider in 'Internal Rotation in Molecules,' ed. W. J. Orville-Thomas, Wiley, London, 1972, ch. 13, p. 515.
 ${ }_{22}$ G. Govil, Mol. Phys., 1971, 21, 953.

[^4]: ${ }^{28} \mathrm{C} . \mathrm{J} . \mathrm{F}$. Boettcher, 'Theory of Electric Polarization,' Elsevier, Amsterdam, 1952.
 ${ }_{29}$ E. B. Whipple, J. Magnetic Resonance, 1971, 5, 163.

[^5]: ${ }^{30}$ L. Cavalli and R. J. Abraham, Mol. Phys., 1970, 19, 265; R. J. Abraham and L. Cavalli, ibid., 1965, 9, 67; G. Hagele, R. K. Harris, and P. Sartori, Org. Magnetic Resonance, 1971, 3, 463.
 ${ }^{31}$ H. S. Gutowsky, G. G. Belford, and P. E. McMahon, J. Chem. Phys., 1962, 36, 3353.
 ${ }^{32}$ D. D. Elleman, L. C. Brown, and D. Williams, J. Mol. Spectroscopy, 1961, 7, 307, 322.

